Subspace Acceleration for Large-Scale Parameter-Dependent Hermitian Eigenproblems

نویسندگان

  • Petar Sirkovic
  • Daniel Kressner
چکیده

This work is concerned with approximating the smallest eigenvalue of a parameterdependent Hermitian matrix A(μ) for many parameter values μ ∈ R . The design of reliable and efficient algorithms for addressing this task is of importance in a variety of applications. Most notably, it plays a crucial role in estimating the error of reduced basis methods for parametrized partial differential equations. The current state-of-the-art approach, the so called Successive Constraint Method (SCM), addresses affine linear parameter dependencies by combining sampled Rayleigh quotients with linear programming techniques. In this work, we propose a subspace approach that additionally incorporates the sampled eigenvectors of A(μ) and implicitly exploits their smoothness properties. Like SCM, our approach results in rigorous lower and upper bounds for the smallest eigenvalues on D. Theoretical and experimental evidence is given to demonstrate that our approach represents a significant improvement over SCM in the sense that the bounds are often much tighter, at negligible additional cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗

Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...

متن کامل

Preconditioned Eigensolvers for Large-Scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. II. Interior Eigenvalues

We consider the solution of large-scale nonlinear algebraic Hermitian eigenproblems of the form T (λ)v = 0 that admit a variational characterization of eigenvalues. These problems arise in a variety of applications and are generalizations of linear Hermitian eigenproblems Av=λBv. In this paper, we propose a Preconditioned Locally Minimal Residual (PLMR) method for efficiently computing interior...

متن کامل

Spectral recycling strategies for the solution of nonlinear eigenproblems in thermoacoustics

In this work we consider the numerical solution of large nonlinear eigenvalue problems that arise in thermoacoustic simulations involved in the stability analysis of large combustion devices. We briefly introduce the physical modelling that leads to a nonlinear eigenvalue problem that is solved using a nonlinear fixed point iteration scheme. Each step of this nonlinear method requires the solut...

متن کامل

Preconditioned Eigensolvers for Large-scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. I. Conjugate Gradient Methods

Preconditioned conjugate gradient (PCG) methods have been widely used for computing a few extreme eigenvalues of large-scale linear Hermitian eigenproblems. In this paper, we study PCG methods to compute extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016